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A model of a viscous-plastic medium was first proposed by F.N. Shwedov [l] and, independ- 

ently, by Bingham [Z], to describe the motion of structure-like suspension under shear con- 

ditions. Later I-I. Henckey [3] and A.A. Il’iushin [4] proposed a three-dimensional generalix- 

ation of the Shwedov-Bingham equations of state and solved a number of problems for the 

case of plane flow of a viscous-plastic medium while keeping in mind the application of the 

results obtained to problems of the fluidity flow of metals. 

A large number of works devoted to the investigation of various kinds of fluidity in a 

viscous-plastic medium on the basis of both the exact and approximate solutions of the 

equations of motion have beenpublished within the past IO-15 years. A detailed survey of 

the results obtained is given in [S, 61. 

A characteristic peculiarity in problems of the fluidity of a viscous-plastic medium is 

the need to construct solutions in domains with unknown boundaries. This circumstance 

produces great difficulties in the construction of sufficiently general and efficient methods 

of investigating them. The most general approximate methods proposed in [4, 7-91. are 

valid only for very strict restrictions imposed on the nature of the motion of the viscou,: 

plastic medium. 

Moreover, the possibility of a variational formulation of the appropriate problems has 

somehow dropped out of the field of view of specialists concerned with the investigation 

of the fluidity of a viscous-plastic medium, though, as will be shown below, this formula- 

tion has definite advantages as compared with the formulation in terms of differential 

equations. A variational formulation of problems of the plane fluidity of a viscous-plastic 

medium was first given in [4]. 

Au attempt is made here to give a qualitative investigation of the general properties 

of some specific types of motion of a viscous-plastic medium on the basis of a variational 
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formulation of these problems. 

The variational principle for arbitrary slow flows of a viscous-plastic medium is for- 

mulated in section 1 and a specific form of the functionals is indicated in the case of plane 

flows and of flows in cylindrical pipes under the influence of a constant pressure drop. 

Furthermore, the nature of the flow in pipes is investigated qualitatively in section 2. It is 

shown that in a pipe of arbitrary cross-section there always exists at least one nucleus 

moving as a solid. A formulation of the problem of the motion of a body of arbitrary con- 

figuration in a plane channel is given in section 3. It is established that the perturbations 

caused by the moving body decrease exponentially with distance from it. It is also shown 

that if the yield point of the medium approaches zero, the solution of the problem for a 

viscous-plastic medium passes over into the solution for the corresponding problem for a 

viscous fluid. 

The concluding section 4 contains a proof of the existence and uniqueness theorems 

for a broad class of functionals containing the functionals considered in the previous 

section as a particular case. 

The results obtained necessitated a number of tedious calculations and proofs. In 

order to make the fundamental qualitative deductions clearer, the authors considered it 

worth while to relegate all the awkard proofs to an appendix at the end of the paper. 

Appropriate references are given in the text of the paper. 

1. Variational principle for slow motions of a viscous-plastic medium 

In the general case a viscous-plastic medium may be defined as a medium in which viscous 

flow is manifest under the condition that the intensity of the tangential shear stresses (I 

exceeds some quantity ro, called the yield point. For (7 < so the medium is in the rigid 

state. 

On the basis of thermodynamic relationships for dissipative continuous media, an 

analytical definition of a viscous-plastic medium may be given in the form of a certain 

variational principle. 

Variational principle [4, 10. Ill. For an invariant flux of energy through the boundary 

of a volume occupied by a viscous-plastic medium, the actual motion differs from any 

kinematically possible motion in that for the actual motion, the functional 

J = 1 [Xi (eij) + X,’ (eij) - Fivi] clw - \ tivi US (1.1) 
0 r 

has a minimum. 

In this relationship the cii are components of the shear rate-of-strain tensor, vi and 

Fi are components of the velocity and external mass force fields along the coordinate 

axes, and ti are projections of forces acting on the surface r bounding the volume o_~ oc- 

cupied by the viscous-plastic medium. 
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The dissipative potentials Xi and Xi [12] for the viscous-plastic medium are 

X”’ (e..) = IL7” 
IJ 2 ' 

X,' (eij) = TOT (1.2) 

Here p is the coefficient of viscosity of the medium, and y is the intensity of the 

shear rate-of-strain tensor (the medium is assumed incompressible). 

In the case of plane flows of a viscous-plastic medium and in the abseuze of external 

mass forces, (1.1) may be represented as 

J (y) = \{$ ](py)’ + (QW2] + z, [(PY)z + (Qy)2]*$& _ 
0 

- 

S( 

t, ;; - t, z) ds, 
u=auI 

i3Y 

aY ’ 
v=-as 

(1.3) 

P=-&&, Q=2& 

Here v is the stream function, x, y a fixed Cartesian coordinate system, and u, v are 

components of the velocity vector of the particles of the medium along the coordinate axes. 

The function v should satisfy certain boundary conditions on the boundary r of the 

domain us. The shape of the domain o and the boundary conditions imposed on B are de- 

termined by the specific peculiarities of the problem. 

In general, the functional I (\y) is not differentiable, and hence, has no appropriate 

Euler equation. 

In fact: 

J (Y + hh) - J (Y) = 1; [2APYPh + 2hQYQh + ha (Ph)a -I- 
O 

+ ha (Qh)21 do + 2% 1 
hPYPh + IQYQh 

(D [(PY + hPh)a+ (QY + hQNal" + [WVa+ (QW" 
da + 

+ 1 WY + APW + ( 

ha( + l.a(Qh)a 

QY + AQh)a]“s + [(PY)a + (QY)al"s 
do (1.4) 

The last integral is essential in the domain where p\y I QY = 0, which also 

denotes differentiability of the functional I (B). 

In view of the above circumstance, the differential formulation of the problem on 

plane flows of a viscous-plastic medium proposed in [3, 41 is equivalent to the variational 

formulation only if the intensity of the tangental stresses everywhere exceeds the yield point 

of the medium. 
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In this case 

VW” + (QW > 0 

everywhere and, according to (1.4). the functional J (I) becomes differentiable. 

Y 
I- 

CLI 

@ 

0 X 

FIG. 1. 

The last remark specifies the suitability of the differ- 

ential equation formulation of problems on plane flows only 

for a very restricted class of problems. Utilization of this 

formulation in other cases always requires reliance on sup- 

plementary assumptions on the nature of the motion, on the 

shape of the domain in which the medium is in the rigid 

state, etc. The validity of such assumptions requires ad- 

ditional careful verification in each case. In addition, the 

question of the uniqueness of the selection of the shape of 

the domain where the medium is in the rigid state is still 

open. Examples of such an ambiguity are known for rigid- 

plastic models [ 131. 

Let us now examine the steady-state motion of a viscous-plastic medium in cylindrical 

pipea of arbitrary cross-section subject to a given constant pressure gradient or external 

maao forces. for example, the force of gravity. 

The trajectories of the medium’s particles will be rectilinear during motion in pipes 

and their velocities s (x, y) will be parallel to the pipe axis. In this case the functional 

(1.1) will be 

J(u) = S{e[(~)‘+(~~]+~~[(~)“+(~)‘3”-C”idO (1.5) 

0 

where the integration extends over the whole pipe cross-section (Fig. 1). Adhesion condi- 

tions are satisfied on the pipe surface so that we have for I( (x, y) 

(1.6) 

It may be shown in a similar manner that the functional (1.5) is also non-differentiable 

in general. 

Let us turn now to an investigation of the properties of the functions which minimize 

the functionala (1.3) and (1.5). The existence and uniqueness of such functions will be 

proved in section 4. 

2. Qualitative analysis of the flow in pipes 

Flows of a viscous-plastic medium in cylindrical pipes possess a number of peculiarities 

noted in the investigation of the motion in a circular pipe [14]. Among these, for example, 

are the presence of a rigid nucleus within the flow domain, and the existence of a critical 



Fluidity of a viscous-plastic medium 549 

pressure drop, which must be exceeded in order to maintain stationary motion with a UOU- 

zero velocity. 

It will be shown below that these peculiarities hold even for the motion of a viscous- 

plastic medium in cylindrical pipes of arbitrary cross-section, and are associated with the 

non-differentiability of the functional (1.5). 

Let us say that the flow does or does not exist in the domain if 

respectively. 

Let us prove the following lemma. 

Lemma 2.1. A flow does not exist in the domain o if and only if 

zo (gradhjdo - c hdo>O 
s s 0 0 

for all h defined in the domain o and satisfying the boundary condition (1.61. 

(2.11 

Proof. The conditions for the existence and absence of a flow in the domain o are 

evidently equivalent to the conditions J (u) < 0 or J (u) = () respectively. Let the 

ineqaality (2.11 hold. Then J (h) > 0 f or all h satisfying condition (1.6). Therefore, 

I (u) = 0. Hence, the sufficiency of condition (2.1) is proved. Now, let us assume that 

there is no flow in the domain o and there exists a quantity A satisfying (1.61 such that 

z, jgradh\do-c hdo<O 
s s 0 0 

Then a sufficiently small number h > 0 is found for which I (Ah) < 0. But since the 

function u minimizes the functional considered, J (u) f J (Ah), that is, the flow exists 

in 0, which contradicts the assumption made. The lemma is proved. 

The inequality (2.1) is essential to an analysis of problems of the motion of a viscous- 

plastic medium in pipes. It is hence desirable to establish conditions associated with the 

geometry of the domain o and the parameters c, SO which would guarantee compliance with 

the inequality (2.11. 

The following lemmas hold. 

Lemma+ 2.2! If h (x, y) is a smooth function satisfying condition (1.61, then 

K IgradhIdo> hdo, 
s s 

K = st~mm~ (2.21 

u) 0 - 

r The proofs of the starred lemmas and theorems ore given in the Appendix at the end of 

the paper. 
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where o’ia an arbitrary snb-domain’ of the domain o, with boundary r’. 

Lemma* 2.3. There exists a sub-domain or with boundary r, for which 

me6 01 
K=-..-- 

mes f1 

where, if P is a point of rI not on r, then the connected part of the set r,\ I’, con- 

taining P is the arc of a circle touching r. 

The boundary r in lemma 2.3 is assumed to be smooth, except possibly, at a finite 

number of points. 

Lemma* 2.4. If the domain o is p-connected. and d is the inner radius of the domain, 

equal to max p (P, r), where p (P, r) is the distance between the point P and the domain 

boundary for all points P E CO, then the constant K in lemma 2.2 agrees with the estimate 

(d / 2) < K < 8pd , w h erein the lower bound is exact. 

It follows from lemmas(2.1) to (2.4)that a necessary and sufficient condition for the 

absence of flows in the domain o is the condition c < T, / K. If c < T, / 8pd, there 

is no flow in o. Conversely, if c > 2t,, / d, flow always exists in w. 

The equality c = Z, / K defines the critical value of the pressure drop between the 

ends of the pipe. The necessary and sufficient condition for the existence of a stationary 

flow with a non-zero discharge is an excess over this critical pressure drop. 

Lemma 2.3 permits the value of K to be found effectively for a number of domains. 

For example, for a circle of radius R, K = R/2 ; for an annulus of inner radius 

R,, K = ‘I, (R, - R,); f or a square of side a and a rectangle with sides a, b (a > b), 

respectively 

K= a K= 
ab 

2+)/Z’ a + b + v(a - b)2 + nab 

Let us note that out of all pipes with equal cross-sectional areas, the least critical 

pressure drop is achieved for a circular pipe. 

Let us now formulate and prove the following theorem. 

Theorem 2.1. If the function u (x, y) minimizes (1.5). then 

(2.3) 

t The quantities mes o ‘and mes r’may be considered as the area of the domain o ’ 
and the length of the bonndary r: They should more strictly be understood to he tbe 

Lebesque measurea of the corresponding sets. 
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Proof. Let us assume that J (u) < 0 since otherwise u u 0 and inequality (2.3) fs ob- 

vious. But then 

IL -(~~gradu\do)l +r,C\Igraduldo-cKSIgraduldo<O 
Zmeso 

ro 0 0 

Therefore 

s Igrad uIcZco< IrnFw (cK -q,) 
la 

Using (2.2) and (2.4) we obtain theorem 2.1. 

Theorem* 2.2. The function u (x, y) minimizing (1.5) is continuous in the domain 0. 

Up to now only general properties of the minimizing function, including the theorem on 

its continuity, have been established. 

However, from the mechanical viewpoint, the analysis of the structure of the minfmiz- 

ing function is of greatest interest. 

Theorem’ 2.3. Any local maximum of the minimizing function is achieved in a domain 

whose every connected component contains a circle of radius RI = ‘Co / 8pc and does not 

contain a circle of radius larger than R, = 22, / C, where 

*PC maxu< ~0 ( 1 
a 2K y” (&-To) 

The sub-domain o ‘of the domain w in which u (z:, y) reaches the local maximum will 

be called the nucleus of the flow. 

The existence of a nucleus in the flow is an important qualitative characteristic of the 

motion. It means that during the flow of a viscous-plastic medium through a pipe there will 

always exist at least one nucleus of finite size for any finite pressure drop, which will 

move as a solid with constaut velocity. The terms containing gradients of u (r,y) in the 

functional (1.5) will vanish in o’which indicates that there is no dissipation of mechanical 

energy within the nucleus. 

It is easy to show that each connected component of the nucleus is also simply connected 

in a simply connected domain w. Let us mention the sufficient conditions which the domain O, 

guaranteeing the existence of a simply connected nucleus, mu3t sati&. These conditions are bLscc 

on the important principle of majorizing one flow by another. Let I,(u) denote the functional 

(1.5), where the subscript indicates the domain in which the functional is defined. 

Theorem 2.4. (Majorizing principle). Let u be the function minimizing I,(u), and w 

the function minimizing I~(w),whcre o C_ 52. Then u \< tu in w. 

Proof. Let us assume that the statement in the theorem is false. Then at some point M 

inowcwillhaveu(M)>W(M).LctH(M)d cnotc the connected domain containing 
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point M at which I) > w. 

Evidently H (MI&J. Let us aaaume that 

s ( $-)gradu\* + z,lgradu)- cu) do> 

H (W 

> H iM, (-$- I grad w I2 + to I grad w j - cw) &I 

Let us coneider the function a* in the domain o 

U* = W in If(M), u* = u in o\H(M) 

It is clear the J, (u*) <J, (u). Rut this inequality contradicts the theorem on the 

uniqueness of the minimizing function. Therefore 

s ( 
H 04) 

q Igradu12 + z,Igradu( -cu)do < 

G s (33 gradw~2-j-zo~gradw\- cw do 
H(M) 

) 

In this case let ua introduce the function w* 

in the domain fi 

W* = U in H(M), W* =w in Q\H(M) 

FIG. 2. As a result we obtain Jt-, (w*) < Jn (w), which 

also contradicts the uniqueness theorem. We hence obtain 

obtain the assertion of theorem 2.4. 

The following corollary may be obtained from the majorizing principle. Let K, and K, 

be, respectively, the maximum circle contained in o and the minimum circle containing o, 

and let ur and or be functions minimizing (1.5) in the circles K, and K,. Then the ineqnaIity 

u1 < U < up holds for the function II minimizing the functional (1.5) in the domain o. 

Lot us conaider the &main o and some line L dividing this domain into two sub- 

domaina ot and e. Let ttrr assume that the domain o: which ie symmetric to the domain 

or1 relative to L. is contained entirely in the domain or1 (Fig. 2). 

Definition 2.1. If the domain or is divided into two subdomains o; and O: by any line 

t ‘parallel to L and intersecting o ao that or* z o 2’, then the domain o is called strongly 

symmetric in the direction of the line L. 

Let u+ (x, yl denote a surface, symmetric to the surface u (x, yI with respect to a 
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vertical plane passing through the line L. The following theorem may be proved in exactly 

the same way as theorem 2.4. 

Theorem 2.5. If ~i* G 02, then we have U* (5, 3) t u (5, 3) in the domain CO*. - 1 

Now the condition guaranteeing the existence of a simply-connected flow nucleus may 

be indicated. 

Theorem 2.6. Let the domain o be strongly symmetric in the 1, and I, directions. Then 

the minimizing function has a simply connected nucleus. 

Proof. It follows from the definition of a domain o strongly symmetric in the direction 

1 that the w is simply connected and has the axis of symmetry L parallel to I, where the 

domain 0, is a subdomain containing the point L. Let us prove the theorem by contradiction. 

Let the flow nucleus contain at least t.vo simply connected components Q, and QI. Then 

one of the axes of symmetry, I,,, say, is not an axis of symmetry for one of the domains 

Q1 or Q,. For definiteness, let this be the domain Q1. Two cases are possible: (1) the axis 

L, intersects Q, ; (2) the axis L, does not intersect Q,. The first case is impossible since, 

by virtue of theorem 2.5, the subdomains Q1, having been obtained from the intersection of 

this domain with the line L,, should transform into each other under reflection relative to 

L 19 which denotes the symmetry of Q1 relative to L, and contradicts the assumption made. 

us show that the second case is also impossible. Indeed, the domain Q1 is located on one 

side of the line L, and has no boundary strip consisting of points with values less than in 

Qi. Let us displace L, parallel to itself until it meets the domain Qt. Let L i denote the 

line which is obtained. It is evident that we arrive at a contradiction to theorem 2.5. when 

the surface II = u ( x, y is reflected relative to the vertical plane passing through L :. The ) 

The theorem is proved. 

It follows from theorem 2.6 that flows of a viscous-plastic medium in pipes with cross- 

sections in the form of regular polygons, ellipses, etc. have simply-connected nuclei. A 

number of domains (not necessarily convex) which are strongly symmetric with respect to 

directions may be constructed according tothe following rule. Let us consider the anglr r>,O, 

O<cp<n/k(k is an integer, k = 2) in the (x,y) plane, and let us consider a curve in 

angle such that if (xl, yt) and (xl, yr) are points on this curve, then 

Let us reflect this curve successively relative to the rays 

r > 0, cp = ns / k (s = 1, 2, . . ., 2k - 1). 

The closed contour obtained bounds a domain which is strongly symmetric in k directions 

(cp = 0, zr / k, . . ., (k - 1) n / k). ‘I-x e converse statement is also true : Any domain 

strongly symmetric in k directions may be constructed by the method mentioned. It follows 

from theorems 2.5 and 2.6 that the flow nucleus in a domain strongly symmetric in k 
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directions is also strongly symmetric in the same k directions. 

In conclusion, let us consider some geometric properties of the flow domain. Let us 

introduce the following definitions. 

Definition 2.2. We call an open connected subdomain o ‘of the domain o in which 

II (x, y) > 0, the connected component of the flow domain. 

Let us note that the connected component of the flow does not permit continuous 

shears and rotations keeping it within O. 

Definition 2.3. A part of the boundary of the connected component of the flow domain 

is called internal if it has no common points with the boundary of the domain O. 

ent 

The following theorem holds. 

Theorem+ 2.7. The connected part of the internal boundary of the connected compon- 

of a flow domain o ‘is convex. 

The results obtained enable the following qualitative picture to be given of the motion 

of a viscous-plastic medium in pipes of arbitrary cross-section. 

In the general case, stationary motion of a viscous-plastic fluid is possible in pipes 

if the pressure drop between the ends of the pipe exceeds some critical value dependent 

on the yield point of the medium and on the cross-sectional geometry. Within the flow domain 

there is always at least one nucleus within which the medium is in a rigid state moving as 

a solid at constant speed. If the pipe cross-section is a simply connected and strongly 

symmetric domain, such a nucleus will be unique and also simply connected and strongly 

symmetric. It follows from theorem 2.7 that the flow domain must adjoin the pipe walls, at 

least at some sections. When the shape of the pipe cross-section has the shape in Fig. 3, 

the stagnation zone in the extension ABC (i.e., the domain where 

Hence, the functional formulation of the problem in the case 

/- 
the flow velocity is zero), if it exists, will have a boundary 

P 

which is convex towards the extension. 

W 

,A 
under consideration turns out to be very effective for the Invest- 

\ 
\ 

igation of the qualitative peculiarities of the flow. It should be par- 

._ 
c 

titularly emphasized that in such an approach the rigid nuc- 

lei are obtained as a natural element of the theory, while in 

6 the differential-equation formulations of the same problem the 

existence of such nuclei is not known in advance and requires 

FIG. 3. the introduction into the theory of such elements as the un- 

known boundaries of these nuclei which are difficult to deter- 

mine. In constructing a rigorous theory of the flow of a viscous-plastic medium the func- 

tional formulation of the problem is, therefore, more complete since it is not associated 

with the assumptiona on the existence or absence of nuclei ; the assumption of the existence 
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of such domains is always an additional important physical hypothesis. 

3. Plane flow of a viscous-plastic medium around a body 

Let us consider the problem of the motion of a body of arbitrary configuration in a plane 

channel of finite width. 

Let 2d denote the width of the channel, and v the velocity of the body. Iu a coordinate 

system connected rigidly to the moving body, and in the absence of external mass forces the 

appropriate functional will be 

J (Y) = \ {$- [(PY)2 + (QY)“l + z, [(PY)’ + (QY)21"'} ah, (3.1) 

w 

where the integration extends over the whole strip with the exeption of the domain bounded 

by the contour r (Fig. 4). 

On the boundary r the function y (z, y) should satisfy the conditions 

P- 

+& J 
X 0 

FIG. 4. 

on r. 

Here c is some constant, equal to zero for flow around 

a symmetric. body if its axis of symmetry coincides with the 

middle line of the channel. We shall seek the solution of the 

problem in the form 

Y (5, y) = uy + cp (x, Y) + u (5, Y) (3.3) 

The function II (x, y) vanishes together with its normal 

derivative at y = fd and on the contour r, and I$ (x, y) is a 

fixed function, finite in the strip, which satisfies the condi- 

tions 

[cp (2, y) + UYlr = c (3.4) 

& [cp (5, Y) + UYlr = 0 

Substituting (3.3) into (3.1) we obtain 

J(u)= S{$r(~p+pu)2+(~+Q~)21+ 
(3.5) 

+ r,&~ + PU)~ + (QY + Qd2r")* 
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Let us analyze aome propertisa of the function u fx, y) which minimizes the functional 

(3.5). 

Let nk denote the half-strip (5 > k; - d < y < d), and nsk the rectangle 

(g< x< k, - d < v < d}. Let v fx, y) be continuous and square-symmetric in nk 

together with itm partial derivativetr to the second order inclusive. Moreover, let 

s JPvl h<C, 
=k 

Then the inequalities 

hold. 

Theorem 3.1. The estimate 

s ~(u)do<~J(u)Cx+ x>L 

=, 
CD (u) = $- r(h)” + (Qu)~I + z,, [(Pu)~ + (Quj21”’ 

where C < 1, p is a enfficiently large positive number, and 2L is the length of the body 

in the channel, is valid for the function u (z, y) minimiaing (3.5). 

Proof. Let OS consider the function h (~1. 

1 

1, x<s, S>L 

h tz) = -2(k-ss)-2(x--)%+I, s<x<(k+s)J2, k>s 

2 (k - s)-2 (x - k)*, (k+s)/2<x<k 

0, x>k 

By virtue of the uniqueness theorem on the minimizing function 

J (4 f J 04 (3.7) 

Using (3.6) and (3.7). taking account of the definition of h (4, we obtain 
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d H k -s 

d 
k-S 

Let 

c(L)= k-s 

Then the estimate 

(3.9) 

nk 
n rk 

results from the inequality (3.8). 

!‘low, let us pat k - s = p. Evidently, C (d/p) < 1 for sufficiently large p. Let us fix 

this number p and let I be a positive integer such that 

Z--L 
--1<r+ 

P 

The chain of inequalities 

(3.10) 

follows from (3.9). 

Finally, w:: obts:r. the statement of the theorem from (3.10) 

X-L X-L 
--1 --1 

\ (3 (4 d40 < [c ($)I p 1 cb (u) do < + J (u) [C ($)I ’ (3.11) 

% nL 

Theorem 3.1 enables an estimate to be made of the rate of decay uf the function u k y) 

with distance along the channel from the moving body. 
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Indeed, let us use the notation 

Lu = (Pzq + (Qu)’ 

Let ua note that if p and ru have upper bounds, then I fu) < k, where k is independent 

of p and ro. Hence, it follows that 

(3.12) 

From inequalities (3.11) end (3.12) we find 

The lest estimate permits two important qualitative deductions. The first is that the 

quantity u (a, y) decreases exponentially as x -+ -. This means that the perturbations 

ceased by the body moving in the channel are practically concentrated in some neighbor- 

hood of it. 

Such a conclusion corresponds qualitatively well with the assumption made in [9] on 

the localization of perturbations caused by s body moving in a viscous-plastic medium in 

a domain of finite size, end is confirmed by experimental results [15]. 

The second qualitative conclusion which may be made on the basis of the lest eatim- 

ate is important in investigations of the passage to the limit es ro + 0 or f.t -+ 0. 

If we put ru = 0 or f~= 0 in the equations of state of a viscous-plastic medium, these 

equations will paaa over formally into the well-known equations of state of a viscous fluid 

or an ideally plastic medium. Nevertheless, the assertion that the solution of problems of 

the flow of a viscous-plastic medium with the corresponding passages to the limit will 

tend to the solutions of the corresponding problems of the motion of a viscous fluid or an 

ideally plastic medium is not obvious. The existence of such a tendency would be an ad- 

ditional argnment indicating the mathematical end physical correctness of the model of the 

viscous-plastic medium. Moreover, this circumstance may turn out to be quite useful in 

working out effective computational methods. 

Theorem 3.1 enables us to assert that the function II fx, y) has derivatives to the sec- 

ond order inclusive, which are aummeble in the domain o, for all values of the parameter 

re, including r. = 0. In order to prove this statement it is evidently sufficient to show that 

u (x, y) has aummable partial derivatives to the second order inclusive in no. Let us note 

that 
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l-I, = u &+kp, x+(k+1) P 
k=o 

the 

the 

Then 

s 
(Lu)“’ do = ; 

%c k=” %tkp, x+ (ktl) p 

(Lu$” da f 2pd; ( \ Lu do)“‘< 

k=O %+kp 
(3.13) -- 

< 2pd ; (t J (u) [C ($)f-? 
k=o 

‘r 

Since the right side in (3.13) is finite, the assertion expressed is actnally valid. 

L-et us now prove that the flow of a viscous-plastic medium transforms as re + 0 into 

corresponding flow of a viscous fluid both in the case of a channel and in the case of 

motion of a viscous-plastic medium in pipes. 

Let I (*I (10 and I, 
r 

(‘I (14, respectively, denote the fnnctionals (1.5) and functional 
,A 

obtained from I>” (10 at ro = 0 fi = 1, 2,). 

Lemma 3.1. The estimates 

where k, and k2 are independent of ro, are valid for a 

function 14; If , together with its first derivative. 

Proof. Since I, (‘) (u) is considered in fnnctione 

have from (1.5) 

JP (UP’) > - k, 

continuous and sqaareanmmable 

given in the bounded domains o, we 

> $- 5 1 grad u,(l) I* AI - C, (s 1 grad ~$1) 1’ &I)” > - ‘9 
0 * 

The lemma ia proved. 

Now fetus formulate and prove the foIlowing theorem. 

(i) Theorem 3.2. The functions I+ 6) converge strongly as r. + 0 to the functiona ue 

minimizing the functionals I,$“(u) in th e s p aces of functions which are summable together 

with their partial derivatives to ith order inclusive. 
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Proof. By virtue of lemma 3.1 and relationships (3.12) and (3.13), we have 

- c < J,(i) (u,(i)) < Jo(‘) (Q)) 

for 8 < r. But then J,(t) @,(‘I) + a as ro + 0. 

Farthermore, since 

(fS Igrad uIsdo)“*< C, (p~Luda)“<c (3.14) 

m u 

then “(f converges weakly as r0 + 0 lo some function u. (i) in the *pace of functions sqnare- 

sununable to the itb order inclusive. By virtue of the nniqlreness theorem for the minimiz- 

ing fnnction J,“’ (ug(*)) > J+(i) (UT’). 0 n t e h b axis of known theorems on weak limits 

[la], we obtain 

J (4) (u 
0 

(i)) 
0 

a lim J 'i) ( 
0 uJi') > J;” (ueti)) 

r.+a 
The theorem is proved. 

4. Absolute minimum of the functionals 

Let os consider the function u (x) defined in the domain o of the n-space 

If’“’ [z = (2,. 2s. . . .I zn)]. Let as assame relative to o that it has finite width in the 

variable xn, i.e., if 21 = (zi’, z~‘, . . ., z,,l) and 2% = (zIa, zla,. . ., 2,s) are two points of 

o, then I z,,’ - 2, I <d. Let uN denote the domain consisting of x such that 

I zi I < N (i < n - 1). Let the expressions 11 ~11~. . - ., 11 u&,+~. possessing the properties 

of the prenorm, i.e., ssch that 

be determined by means of functions I) (xl given in w. 

Let as consider contraction of the function u (x) in uN ; let us assume that the expres- 

sions (4.1) induce the appropriate prenorms 11 u I&, N, I/ uik, .y, . . ., /I 21 jlp, x, !I u jjpf,, N 

in uN, where 

Ml,“,, =,$ uzW II UII 2 p+l. N = s 
uzdo 

(4.2) 
0 ‘D.V 

Let us introduce the Banach spaces A (@), z-1 (~g)~ B (a), B (a.~_), C (0) and 

C (61~). in which Ihe norms are defined as follows : 

P+l 

baB(~)= (4.4) 
i=l 
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(4.5) 

The spaces A (ON), B (ON) and C (oN) are the contractions of the spaces A (o), 

B (co) and C (0) in the domain ON. 

Let us make the following assumption relative to the introduced prenorms: If 

u (4 E B (a), then u (x) considered in ON, belongs to B (ON), and hence 

I/ u [Ii > 11 u Iii, N’ tsll u Ik, N = II ZJ Iii (i = 1, 2, . . ., k) (4.6) 

Analogously, if u (z) E C (o), then u (I) E C (oN) and 

II u Iii, N 2 II UlIi, N? i$ll u IL, N = II u Iii (i = k d- 1, - * -9 P + 1) (4.7) 

Let us assume that the spaces introduced possess the following properties. 

lo. In the space B (0) the sphere 11 u//B to) < K is weakly compact. 

2O. The topology in the space B (ON) is stronger than-in the space C (ON), i.e. . 

II u II B (WN) > ‘N II u I’c (ON) 

3”. The imbedding of the space B (ON) in L&ON) is completely continuous. 

4”. If u (x) E B (0) and II uIlpfl = 0, then ll ullB (,,,) = 0. 

50. Let some subspace A, (o) be isolated out of A (a). The contraction of A (w) in 

y,, yields A (a$ and that of A, (0) yields A,$,). If v (x), considered in UN for x E 0, 

yields the element A, (a,$,) for all N and II uIIA coN)< C independently of N, then 

V (2) E-41 (0). 

Let a functional I (u) having the structure 

J (u) = @ 01 u -t ‘PI Ill; . . ., II u d- ‘P, Up) f T (4, ‘Pi (r) E A (0) (4.8) 

where the functional T (u) allows expansion in the space B (0) and is weakly conti- 

nous [16], be defined in the space A (a). The function @ (h,, &, . . ., $,)is continous in 

all the variables and is such that if 0 f hi < ai and @ (A,, . . ., hp) > Q (al, . . ., up), then 

Ai = ai. The functional 1 (u) is assumed to be increasing and bounded from below. 

Let us consider the functional I (u) in some subspace A, (w) of the space A (a). 

Theorem 4.1. The functional I (u) reaches its minimum in A, (0). 

Proof. Let us consider the minimizing sequence ui from A, (0). The functional I (u) 

is increasing, and therefore 

II ui IIA (0) < c (4.9) 

But then also jl ui &t fo) < C. Since the sphere in B (w) is weakly compact, there 

exists a u. E B (0) which is a weak limit of ui (x) 
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ui ---f Uor i+ 00, u. E B (4 in B(o) 

Then 

Let us show that ue (z) E A (0). By virtue of the assumptions made relative to the 

spaces, the function ui + q& and no + r&k may be considered as elements of the spaces 

E (w,) and A (w,), where ui + & + u. + q&, and i +oo in A (uN). The latter relationships 

areneeded in the proof. Indeed, since ui (x) converges weakly to some limit in A (ON), and 

continuous functional8 in L, (ON) are continuous functional8 in A lo,,,), then u. + $k and 

the weak limit in A (w,) yield identical values. Therefore, by virtue of 4”, the relation to 

be proved is valid. Furthermore, on the basis of known theorems on weak limits [17] 

lim 11 U, + ‘Pj IIA tw N) 2 II 4 + ‘Pj I/A (ON) 9 n+oo 
(4.10) 

From the demands imposed on the function a, 5’ and (4.9) it follows that 

lim II U, + ‘Pj 11~ (o) 2 II U, + ‘Pj IIA (0)’ n-+oo 

Later the following refinement of inequality (4.11) will be required 

(4.11) 

lim II 4 + ‘Pj llj > II h + ‘Pj II j 0’ = 1, 2, . . *, P + l)? i-+00 

Let us conaider the Banach spaces Di (0~) and Di (0) with the norms 

II u II Di (ON) = ll u if, N f 11 u &+I, N’ II u llq (a) = II IJ Iii -Ji II u I&+1 

Weak convergence in Di (tiN) follows from the weak convergence in B (oN) since 

B (0~) C Di (~0~) and B* (mN) 3 Di* (ON)* where the starred values denote the conjugate 

spaces. 

Fly virtue of assumption 3O, the convergence to uo + +j in L, (I+) is strong and from 

the inequality 

f%ll ‘i + 'Pj l\Dj fON) > ii % + ‘PjllDj (ON) 

follows 

lim 11 ui + ‘Pj IIj, N > II UO + ‘Pj llj, NV limll ui + ‘Pj I/j > II u. + Tj Ilj 
i-wm i-PO3 

Let us note that u. (r) E AI (o), since the contraction of up in w,~ belongs to A, (a,) 

and by virtue of assumption 5” we see that ug EAi (0). 

Let us prove that a minimum is realized on uu (z). Evidently it may be considered that 

lim /I % + ‘Pj I/j = aj ,)- I/ uo + pj Ilj i-w 
ci = 1, 2. . . ., P) 

Then 



Fluidity of a viscous-plastic medium 

Furthermore 

J > lim (I(;) = (at, * . .( 
i-too 

up) 

@ UI uo + 91 Ibl ** .,II~o+(Ppll*~~~(Q~,~~~,ap~ 

Therefore, because of the properties of the function 0, uj = 11 u. + qj IJj hnd theorem 

4.1 is proved. In addition, let us esaume that the prenorms II*lh, . . ., il*llk poasenrr the pro- 

perty of uniform convexity [161, i.e., if ur, up E Dj (o), then e 6 (6) corresponds to each 

E > 0 such that for 11 v1 & = 11 ~2 lIj= 1 and 11 VI + VP llj > 2 (4 - 6) the inequality 

holds. 

II Vi - Va Ilj < e (4.12) 

Moreover, let us assume that we have in the subspace A, (0) 

II u ID c II u I&+1 (i = 1, 2, . . . , k) 

Theorem 4.2. ui (z) converge strongly in B (0). 

Proof. Let US conaider the elements (ui + qj) /II it + qj Ilj, (~0 + pj) /II ~0 +qj b. 

Let US note that II hi f Wj lb # 0, since if 1 uc + gj Ilj = 0, then II ui + ‘pj ljj -_, 0 as 

i + 00 and ui + 4. would converge strongly to zero. We have 
I 

II Ui+Vj + UO + ‘Pj 
II ui + ‘Pj Ilj II u. + ‘Pj llj II j 

>II”i +2Tj+“oIlj _III”i+cPjIlj-ll”o+cPjlIjI 

II ui + ‘Pj Ilj II % + qj llj 

where 

lim II ui + Wj + uO lb > 2 I II ui + qJ Ilj - II u0 + [Pjllj I = 0 

i-w20 11 Ui + qj[\j ’ ’ ii% II % + ‘Pj llj 

Therefore 

II ui + Cpj 
II Ui + Pj llj 

+ 
u. + Cpj 

II u. + Vj llj II j 
>/2--6((i) (6 (i) -9 0 for i + oc) 

But then, because of the uniform convexity 

which proves the theorem of the strong convergence of ui in E (w). 

Theorem 4.3. If the prenorm has the form I\ uIla = (u, u), where (u, v) is a bilinear 

positive symmetric form, then this prenorm is uniformly convex. 

Proof. Let 

II u II = II v II = 1, ll u + v )I > 2 (I - 6), for (u, o) Z 4 - 46 + 2~5~ 
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Then 

llu--II= 1/:!-a(U3<21/26 

Let us mention some additional restrictions on the prenorm ll.IJj, i > k -I- 1, which 

will guarantee the strong convergence of ui to ua in ‘4 (0). 

(a) Let the prenorms Il*(/jl i > k be determined by functions II (z), where r E o\o,. 

Let l\‘&, No denote these prenorms. 

(b) lim 11 ~Ilj, NO = 0, u E Dj (a), N + CQ. 

(c) A 6 (11 a /Ij, &) corresponds to each E > 0 such that if I l/ u Ilj- IIuilj, N ) < 6, then 

11 u II Ed, N3 < E, where 6 (11 u IIf, E) depends continooualy on I/ U I/j for I/ u jlj # 0. 

(d 11 ’ l/j G f [Cp (II u lb, N) $_ Y (l/ u I/j, N0)I and Y (0) = Y (0) = f (0) = 0; 

the functions f, 4, ‘Y are continuous. 

(e) If lim 11 u illj = 0, then ]im I[ ui jlj, ND = 0 as i + 00 

The~rern 4.4. Under the assumptions made relative to the prenorms l]*[b the sequence 

ai (z) converges to us(z) strongly in Di (O 1. 

Proof. It follows from theorem 4.3 that there is strong convergence in L, (0). 

It is therefore necessary to prove that 

lim [/ Ui - U0 Ilj = 0 for i + 00 (4.14) 

Furthermore, we have from (d) 

11 ui - uO llj < f [Cp (II % - uO Ilj, N) +  Y (II Ui - +o Jlj, No)1 

I/ “i - ‘O IIj, N~C II ILi + $‘j IIj, No f II Ui + qj I/j, NO 

If // UO+ ‘Fj IIj= 0, then lim I/ ulf Yj Ilj, NO = 0 as i + ~0, and since I/ ai- &I I/j, N --$ 0, 
as i + m, it follows from the preceding inequalities that jl ui - u. 11 j, N -P 0 as i -+ 00. Let 

11 u. + Yj /I j # 0. Then for sufficiently large N 

II ~0 + ‘Pj /I j, N” ~ ’ (N) 

Moreover, let N be so very large that 

I I! “0 + ‘Pj II j - II uO + ‘Pi II j, N I < ‘/CS6 

Upon selecting sufficiently large values of i we will have 

I ii ‘i + ‘Pj II j - II % + ‘Pj II j I < 1j36* I II ui + Tj I/ j, N - II ‘0 +  ‘Pj II j, _V I < ‘j.3’ 

Therefore 
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From condition (c) it follows that 11 ui f ‘pill i, NO < 8. 

Hence, the arguments of the functions (b and $, and therefore, of f as well, become 

as small as desired for sufficiently large values of i. The theorem is proved. 

Definition. The functional I (u) is called strongly convex if 

J v/2 (Ul + 41 < l/z v (4 + J (ua)l for UI # u, 

Uniqueness theorem. If the functional has the property of strong convexity and 

a = J (ul) = J (uz) = inf J (u), where u, uIr urn A, (o), then uI = up. 

Proof. Since u1 and uI belong to A, (o), then l/r (ut + ur) E A, (0). 

But then 

J P/a (u1 + %)I < ‘/a [J (%) + J (%)I = a 

which contradicts the condition of the theorem. 

Let us turn now to the application of the results obtained to the investigation of 

specific flows of a visoous-plastic medium. Let us use the following notation in (3.5). 

II u + cp II 2 = T,,\ [(P (cp + 412 -t (Q OTJ + 4)21”rd~ 
0 

Then 

J (u) = II u + cp II I2 + II u + ‘p II 2 (4.15) 

Hence, J (u) is a particular case of the functional (4.8). where @ (A,, &) = A: + & 

and, evidently satisfies the demands imposed on this function. 

The functional T (u) is zero in the case under consideration. 

Let us verify conditions lo to 5”. We have p = 2, k = 1. The space B (0) is a Hilbert 

space, and therefore, 1” is satisfied. Condition 2’ follows trivially from the Cauchy- 

Buniakovskii inequality, where C.V = mes oy. Conditions 3O and 4’ are valid because of 

well-known imbedding theorems [la]. 

Let us consider the closure of the space Cow (0) in the metric A (0) as the subspace 

.4, (0). The validity of condition 5’ is hence obvious. 

A stronger assertion is valid relative to the prenorm j:.i/ t namely, it is uniformly 
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COIIV~X by virtue of theorem 4.3. 

Let OIB show now that conditions(a) to (c)are satisfied. Let us define // u IIj, ~0 thus : 

Conditiona (a) and (b) are hence evidently aatiafied. Since IIo!Ii >IIoIIi, ~0, here, con- 

dition (a) ia alao satisfied. Conditions (c) and (d) f o ow directly from the following ob- 11 

vious relationships 

Let ue verify the last condition of stric convexity of the functional. Actually 

Ill/2(uI+ %)IIa <‘/Z(II~1ll2+ll~zll2) 
II ‘/a (111 + 4 II 2 < ‘12 (II 4 II I2 + II u-2 II 12) 

where the equality in the last relationships holds only for u1 = ox. 

Hence, the existence and uniqueness of the solution of the problem of motion of a 

body in a plane channel representable in the form (2.7) have been proved, where the sum 

of the last two componenta ia a function from the space wz (‘) (0) n WIt2) (0). On the 

basis of known imbedding theorems, the solution is a continuous function. 

Let us represent the functional (1.5) as 

(4.16) 

for the case of flow in a pipe. 

Evidently, the functional T (Y) ia weakly continuous. It follows from (4.16) that J (d 

is a particnlar case of the more general functionala considered above, and it satisfies all 

the necessary conditions. In exactly the same way as in the case of flow in a channel, we 

may show that in the care under consideration uniqueness and existence theorems hold for 

the solution. The sole difference from the preceding case is the fact that the solution will 

be a function of the apace wx”(r) (0). 

The authors are grateful to G.I. Barenblatt end B.R. Vainberg for valuable discussions 

and council. 

APPENDIX 

Proof of lemma 2.2. Let us show that K > sup (mes o’ / mes P’), 0’ c_ 0. To do this, 
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let us consider an arbitrary domain a1 in the domain O, and the sequence of functions 

v.(x, y) which equal 1 in the domain 
1 

o,\Oj (Ii.) and 0 in the domain c~\(mi lJ 0.; (It)), 

where r, is the boundary of the domain CII~; Oi(r,) is the circle rl which shrings to r1 as 

i + m. Let us assume the existence of a finite curvature at all points of r,. This permits 

the introduction of a curvilinear coordinate system in the circle Oi(rJ by considering s, 

the arclength along r,, as one of the coordinates, and n, the length of a segment normal 

to rr, as the other. The functions vi&, y) are monotone functions of the variable n in the 

circle Oi(r,) (the lines n = fai are the bonndary of Oi(rl). 

Then 

= 
j_. s dv. 
lim s 1 grad vi 1 do = lim lim 

j_Oj (r,) 

I grad uj 1 do j_ oj(r,) -&J (~9 4 dsdn s 
where J (s, n) = 1 + 0 (n). Hence 

lim s 1 grad vj I do = lim s dvi 

j-+m o j+03 Oj(&) 

dn dsdn = mes I1 

Furthermore, it is evident that 

lim 
s j++wU 

vjdxdy = mes 01 

(A.l) 

It follows from (A.1) and (A.2) that K >,mes &mea ri. Let us show that K < sup 

(mes O’ / mes I”), o’ C o. It is easy to see that it is sufficient to verify the assertion of 

lemma 3.1 only by functions h, continuous, positive and belonging to the space 

WP”(l) (p > 2). L e us continue the function h to zero in some square containing the t 

domain w. Let us approximate this continued function by polynomials Pd (2, Y) in the 

square in the metric of the space W (l). Since p > 2, it follows from the imbedding theorem 
P 

that the convergence of P i(x, y) to h (x, y) is uniform. Hence, it may be considered that 

I P,,’ (x, Y) - h (x, Y) I < 1 / n in 0 ad 

s 1 grad P,’ (a, Y) - h (I, y)) I do I 1 / n 

Let us put P, (2, yp’ P,’ (x, y) - 1 / n. Evidently P, (x, y) < 0 on the boundary 

I? of the domain w. Let us consider the line of zeros of the polynomial P,, (x, y) in the 

domain o and bounding the domain s,, containing all the rest of the zeros of P,,(x, y) 

(this line may consist of a finite number of connected components). Let Q, denote a fnnc- 

tion defined in o as follows : 

It is easy to see that 1 Q, - h I< 2 / n in o. In fact, we have I Qn - h 1 = 
lP,--hl<2/n ins,. We have 1 Q, - h 1 = I h I in the domain W\S, and since 

P, < 0 in O\s,, and L >O, then IAl < 2/n. Indeed, let us show that 

mes{(0\8,)nsupp~)+0 -n-m, where supp h is the domain in which A >/O. In fact, 
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let us consider the set As = {(x, y) : 1 h I< 2 / n} n supp h. Evidently 

(o\s,,) fwpp h C 4, and 
bounded, then 

-%I 14+1. Since lim A, is the empty set and An are 
n-Kc 

lim mes A, = 0 
n-NW 

It hence follows that 

Let us show that 

In fact 

s 1 grad (A - 

0 

lim mes {(o\s,) n supp A} = 0 
*-HZ0 

lim Igrad(h-- Q,)Ido=O 
n-rar s 

0 

Q,)Id~= \ lgrad(h--P,)Idw+S/gradhIdo 

sn 

(a\~) n SUPP h 

(A.3) 

(A.4) 

(A.5) 

The first term on the right in (A.51 evidently tends to zero. The second term tends to 

zero because of (A.3). The next step in the proof is to obtain the inequality 

,. 

K Igrad Q,,l da>, Q& 
I s (~.6) 
0 0 

Let us introduce the function Qs* as follows : Q,’ is obtained from Q, by shrinking the 

local minima by horizontal planes, i.e., if Q, has a local minimum, then the level lines of 

Q, are ovals in the neighborhood of this minimum. Let us select those ovals on 

which Q, takes its maximum value. 

We put the function Q,’ equal to this greatest value in the whole domain bounded by 

the mentioned oval. We repeat this construction for all local minima. Since 

\ I grad 0, I do > ‘i, I grad Q,,* I dw, 
. \ Qn*da 2 \ Qndo 

0 0 w 0 

the inequality (A.6) will follow from the inequality 

K 
s 

1 grad Qn* / da > 
5 

Qn*d@ (A.7) 

w 0 

It is easy to see that the whole domain w is covered by level lines of the function Q,’ 

among which are only a finite number which do not have finite curvature in at least one 

point. We shall designate such lines as singular. The remaining level lines, which have 

finite curvature at each point, will be called nonsingular. Among the singular level lines 

are individual points, simple arc, re-entrant curves. Let us consider the nonsingular level 
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line LP enclosing the domain o+ and consisting generally of a finite number of ovals. A 

curvilinear coordinate system may be introduced in some neighborhood of L 
P 

by consider- 

ing s, the arclength of the curve Lp, as one coordinate, and n, segments normal to Lp (n>O 

in the domain o 
P 

, n < 0 otherwise), as the other. Evidently, dxdy = ldsdn here and 

1 (u, n) + 1 as n + 0. In the neighborhood mentioned let ua consider another level line 

LP+bp’ 
whose equation n = n(s) > 0. Let Q,’ Up) denote the value of Q,’ on Lp. Let us 

denote the domain between LP and Lp + *p by up p + *p. Then 
t 

s I grad Q,* I do > \ l$$+dsdn = 

OP,P+AP “‘P,P+AP 

=[ Qn+ tLp+Ap) - Qn* (Lp)l mes Lp f 0 (n (s)) mes c$#+& 

(A.81 

Let us rewrite (~.8) as 

mes op 

mes Lp s 
I grad Qn* I da >, [ Qn* Gp+Ap) - Q,* (LPI 1 mes up + 

“P.P+AP 
(A.9) 

+ 0 (n (s)) mes 0 p.p+Ap mes @P / mes LP 

Since mea up/mea L <K, then 
P 

K 
s 

I grad Qn* I da > 1 Qn* (Lp+Ap) - Qn* (LPI1 ma UP 9 

o~,~+A~ (A.10) 

f ’ (n (‘)) mes up p+Ap mes up / mes Lp 

To small-measure accuracy, the domain o may be partitioned by nonreentrant sub- 

domains @p,p+Ap, i.e. 0, = Uo, p+Ap and mes (o\oJ < e. Summing (A.lO) over dif- 

ferent op p+Ap and selecting n (s) sufficiently small, we obtain 

K 
s 

1 grad Q,,* 1 do > 
s 

Q,,*do - 6 

0 0 
(A.ll) 

where 6 = 6 (E, n (s)), and since the rest of the expressions in (A.ll) are independent of 

E, n(s), then (A.6) follows from (A.ll). Since Qn approximates L in a corresponding 

manner, the assertion of lemma 3.1 is proved. 

Proof of lemma 2.3. Let us note that there exists a subdomain o1 of the domain o in 

which a value K is achieved (see lemma 2.2). This results from the compactness of the 

curves with bounded length. Let the point M belong to r, and not to r. Then M is sub- 

merged together with its neighborhood 0 (M) in w. It is easy to see that part of rl, falling 

in 0 (M), should be convex. Furthermore, let .M1 and Ma be two points which lie sufficiently 

closely on rl and belong to 0 (M). By virtue of the extremal properties of a circle, the arc 
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MrM, of the boundary rI is part of a circle. Let us show that rl and r are tangent at com- 

mon points. Let us assume the opposite (Fig. 5). Let a # 0, T = OM, + OM,; 1 is the 

length of the segment MIM, ; the remaining notation is given in Fig. 5. Then 

me.3 q 
-> 

mes or - mes or’ mes o1 - 0 ((9) 

mes rx mes rr - mes T + 1 = mes r, - a [2 - v/2 + 2 cos c(] + 0 (a? 

or 

a 

FIG. 5. 

a [2 - 7/2 + 2 COS al < 0 (a2) 

The latter inequality is impossible for small values of 

a. The lemma 2.3 is proved. 

Proof of lemma 2.4. The lower bound of K is evident 

since if d is the inner radius of the domain o, a circle of 

radius d may be taken aa the subdomain o ‘. Let ua prove 

the validity of the upper bound of K. Let us cover a plane 

by squares with side 4d. It may happen that the whole 

domain falls into one square. We will then construct the 

domain o on one of the sides of this square. Let the mag- 

nitude of the projection be t. 

Evidently mes o < 4td and mes r >/ 2t, from which mes o/mes r < 2d. The assertion 

of the lemma is satisfied in this case. Let the domain w be covered by at least two squares. 

Let us consider squares all of whose sides lie within o. It is easy to see that the partition of 

the plane into squares may always be chosen so that the number of such squares will not 

exceed p - 1, where p is the number of connectivities of the domain o. Let us eliminate 

these squares from the considerations. Let us take an arbitrary square from the rest, which 

has at least one common point with the domain U. Two cases may be represented : (a) the 

center of the square belongs to Q, (6) the center of the square does not belong to 0. Let 

us note that the partition of the plane into squares may be selected in such a manner that 

at least one square of the first kind will take part in covering o. Let us consider case (a). 

It is clear that the area of the part of the domain Q included within the square will not 

exceed 16d’, and the length of the part of the boundary r falling in the square will not be 

less than 2d. Let us consider case (b). Let us construct a concentric square with side a 

in the selected square. Let us enlarge a from zero until it just reaches the domain o. Then 

the area of the part of the domain o included in the original square will not exceed 16d’ - 

a’, and the length of the part of the boundary r falling into this square will not be less 

than 4d - a. 

Let the domain o be covered by rr squares of the first kind (rl >/ 1) and by r, squares 

of the second kind. Then 

mes 0 

mesc 

16r,d2 + (16dZ - a2) r2 f (p - 1) Ihi” 

Zr,d + (4d - a) ra -=’ 8pd 
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Lemma 2.4 is proved. 

Proof of theorem 2.2. Let us consider the sequence of functions ua (x, y) from CT (0). 

which approrfmates the function u (x, y) in the metric of the apace Ip,(‘) (0). Let us trans- 

form from the function ua (x, y) to hi (x. y), obtained from us (x. y) by joining local minima 

to horizontal planes (as was done in the proof of lemma 2.2. in passing from Q, to Qi). 

Evidently I (IL;) = I (u,), where I (u) is the functional (1.5). Let na transform from the 

function al (x, y) to v, (x, y) obtained from ai (x, y) by sectioning the local maxima by 

horizontal planes, where the sectioning of the local maximum may be continued until the 

inner radius of the section d does not equal r&pea The first step in the proof of theorem 

2.2. is that 

J (%I) d J (%a+) (A.12) 

The problem formulated is local, i.e., it is necessary to show that the values of the 

functional (1.5) decrease in the successive sectioning of one local maximum of the func- 

tion ui if the inner radius d of the sections does not exceed ra/8pc. Let h (x, y) be an 

arbitrary continuous function belonging to the space V, (t) (0) and let g (x, y) be obtained 

from h (x, y) by sectioning the local maximum of h (x, y) at the heigh H. Let A be the domain 

of the cut, i.e., the domain in which the functions h (x, y) and g (x, y) are different. If the 

inner radius d of the domain A does not exceed ro/lpe, then 

J (g) < J (4 

Evidently the inequality (A.13) follows from the inequality 

Let t/.’ (x, y) denote h - H. Then (A.14) is rewritten as 

SI 
~Igrad~la+-c,Igrad$I-~}~>O 

A 

Let us strengthen the fnequality (A.15) 

(A.13) 

(A.14) 

(A.15) 

+ 
s 

Igrad$Ido>\ $d@ (A.16) 
A A 

By virtue of lemmas 2.2, 2.4, the inequality (A.16) is satisfied if rde > 8pd 6r 

d < ra/8pc, where d is the inner radius of the domain A. Hence, by virtue of fneqaality 

(A.12). the sequence v,, (x, y) is minimizing for (1.5) and, therefore, according to theorem 

4.4 the sequence us (x. y) converges to u (x, y) in the metric of the space gS(‘) (0). Let 

us proceed now to the proof of the continuity of the function I( (x. y). Let uo consider an 

arbitrary point (x0, yo) in o and let us construct two circles Kp and K Ip with radii p and 

2p, respectively, with this point as center. Let us select the quantity p so small that K 
2P 

would lie in o and p < ro/l6pc. With such a choice of p a level line of the function v,,(x, y) 
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intersecting the boundary of the circle K 
1P 

will pass through each point of the circle K 
P’ 

Actually, if a point existed in the circle Kp from which a level line did not emergy to 

intersect the cfrcle of radius 2p, then local minima or maxima would exist in the circle 

K 
2P’ 

which may oat be by virtue of the construction of the function on (x, y). Let 

fnf un (2; Y) = v, h, YA sup “n (2, Y) = “, (x,, YZ)? (.t.l/Eh-F 

Let K, denote a circle of radius I with center at the point (x,, yu) and p < r S 2p. Let 

level lines issue from the points (x,, yt). (x, , yJ. Th ese lines will intersect the boundary 

of Kr at the points (r, ‘p1 (r)), (r, (pr (r)). Evidently 

where cw us (2, Y), (I, Y) E Kp is the oscillation of the function vn in the circle K 
P’ 

Furthermore 

2P 

[osc~,(~,y)121112= 
s 
P 

Since 

then by virtue of the absolute continuity of the integral as a function of the set, N and 

8 may he associated with any E > 0 such that p < 8, n > N and 

[osc v,, (2, y)]’ In 2 < e, (WEEK (A.17) 

By virtue of condition (A.17) and the boundary condition (1.6) to which all the func- 

tions vn are subject, the sequence vn (x, y) is uniformly bounded and equicontinuous. 

Using the Artsel theorem, we deduce that the function u Cr, y) is continuous. 

Proof of Jeorsm 2.3. Let us consider the sequence vn (x. y) constructed in the proof 

of theorem 2.2. Since the function vn (x, y) is continuous in o, non-negative and vanishes 

on the boundary r, the absolute maximum of vn (x, y) is achieved in some set each of 

whose connected components contains a circle of radius rJ8pc. It is easy to see that the 

function I( (x, ,y), being the uniform limit of the. sequence v, (x. y), possesses the same 

property. A stronger statement can evidently be made relative to the function II (x, y). 
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Namely, each local maximum of the function u (x, y) is achieved in a set, each of whose 

connected components contains a circle of radios r&lpc. 

Theorem 2.1 states that 

But since 

then 

Let us show that the set A on which the local maximum of u (x, y) is achieved may 

not contain a circle of radius greater than 2r.J~. Let us assume the opposite. Let A coa- 

tain a circle K, of radius t = (2rJc) + E. 

When the domain o is a circle, the explicit form of the function is known, which 

minimizes the functional (1.5) [14] , w h ere this function is not zero if r > 2re/c. Let us 

consider the fnnction uu (z, y), equal to the known minimizing function in the ckcle K, 

and zero outside this circle. It is then easy to verify that I (4 + I() < I fu). Thus, in 

reality, the set A may not contain a circle of radius greater than 2rO/c. Theorem 2.3 is 

proved. 

Before proceeding to the proof of theorem 2.7, let us prove the following lemma. 

Lemma A.l. Let two functions f(x) and g (x) be defined in [o, b] snch that 

Then 

b b 

s ~f’I”dr,( Ig’l=dz, s a>,1 (A.181 
a a 

Proof. Let us prove (A.18). when f(x) = &x +.b. It follows from the HLilder inequality 

But 
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On the other hand 

b 

s 1 f’ 1’ dx = k’= (b - a) 
a 

The proof for f (x) - ks + b has thereby been concluded. Let o < x0 < b. Let us draw 

a tangent line to f(x) at the point xe. This tangent lies under the curve f (x) (since 

f” (x) > 0) and intersects the curve g (x) in at least two points x01, z,,r. Let us trans- 

form from the cnrve g (x) to the curve g, (x), which coincides with g (x) ontside the seg- 

ment f~or, zfl and coincides with the tangent to f(x) at the point x0. Then because of 

the discussion curied out above 

b 

1 I g’ I” dx > s” I gl’ 1’ dx 
a a 

Furthermore, drawing a tangent to f(x) at another point 

and replacing g, (x) on the corresponding portion by a linear 

function we obtain g, (x) and 

b Eb 

1 1 gl’ (2) ia dl: >, 5 I g,’ (I) la dx 
a Ia 

FIG. 6. 

Repeating this process without limit, we obtain the 

lemma. 

Proof of tkvorrm 2.7. The proof is by contradiction. Let P, and Pa be two points of 

the connected portion of the inner boundary r’ of the connected components of the flow 

domain o’, and let a point Q not belonging to o ‘exist on the segment [PI, J'J . Then a 

whole interval of the segment [PI, PSI with the endpoints Q1, Qr lying on P ([ Ql, 

Qel s [PI, Pe) belongs together with Q, to the domain o\o’. Let a positive direction 

be aelected on the boandary of the domain o ‘(the domain o ‘remains to the left) and let 

the arc QIQ*Qe be matched with the direction of travel, where Q* E T’ and Q’ does 

not belong to [QI, QJ. Let us introduce a new coordinate system by directing the Oxt 

axis along the segment [PI, Ps], and the Oy, axis perpendicularly to [PI, Ptl towards Q*. 

We take the origin at Q. 

Let u (xl, y3 denote the fnnction minimizing the functional (1.5) in the new vari- 

ables. Let us consider the cylindrical surface I = f (yJ such that f (0), f (~3 >O for 

Yl > 0, 1’ ~YI) > 0, f’ (~1) > 0. It can be shown that there exists such a cylindrical sur- 

face of the form mentioned, which intersects the snrface z = u (21, ~1) on the line L going 

from the point Qt to Qr with projection L ‘lying entirely within o ‘. Let us consider the 

domain of, ‘, which is an expansion of the domain o ‘to the segment [ 919 Qal inclusive 

(Fig. 6). Let S be the domain bounded by a contour consisting of L ‘and the segment 

[ QI, Qd Let us pat no (11, ~1) eqnal to u (11, ~1) in o ‘and equal to zero in oP’ \ 0’. 

Let us fntrodace the fnnction 
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(A.19) 

in the domafn up’. 

Let us show that 

To do this it is sofficient to establish that 

The former is evident by virtue of the construction of the function w. To prove the 

latter inequality, let us note that the integrals should be considered only in the sub- 

domain of the domain S where w and uo are different. Then, repreaentfng the double integral 

by iterated integrals, we obtain that 2O is equivalent to 

1 f’ (Y) la dY f i dz 5 “‘~“’ I grad ug I” dy (A.20) 

a i-1 vi(*) a i=l Y&I) 

The inequality (A.20) follows from the inequality 

Tha inequality (A.21) foll ows from lemma A.1 which asserts that 

ui+l(“) 

s I f’ (Y) la dy < ui+f” I jh_u 
& I dy 

up) z/i(“) 

Thus the inequality (A.19) h as been proved. Let us contfnne w (zIr yr) from o 
P 

‘to 

zero in the domain o \ cop’ and let us consider the function 

U* (Q, yJ = max {V (33, yl): w (II, Yr)I 

It ia easy to set that J (8) < J (u). Th e contradiction obtained proves theorem 2.7. 
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